Existence of Multiple Nontrivial Solutions for a Strongly Indefinite Schrödinger-Poisson System

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

Existence of a Nontrivial Solution to a Strongly Indefinite Semilinear Equation

Under general hypotheses, we prove the existence of a nontrivial solution for the equation Lu = N(u), where u belongs to a Hilbert space H , L is an invertible continuous selfadjoint operator, and N is superlinear. We are particularly interested in the case where L is strongly indefinite and N is not compact. We apply the result to the Choquard-Pekar equation -Au(x)+p(x)u(x) = u(x) f U <'y\ dy,...

متن کامل

Existence of Solutions for a Modified Nonlinear Schrödinger System

We are concerned with the followingmodified nonlinear Schrödinger system: −Δu+u−(1/2)uΔ(u2) = (2α/(α+β))|u||V|u, x ∈ Ω, −ΔV+V−(1/2)VΔ(V2) = (2β/(α+β))|u||V|V, x ∈ Ω, u = 0, V = 0, x ∈ ∂Ω, whereα > 2, β > 2, α+β < 2⋅2, 2∗ = 2N/(N−2) is the critical Sobolev exponent, andΩ ⊂ RN (N ≥ 3) is a bounded smooth domain. By using the perturbationmethod, we establish the existence of both positive and nega...

متن کامل

Existence Results for Strongly Indefinite Elliptic Systems

In this paper, we show the existence of solutions for the strongly indefinite elliptic system −∆u = λu+ f(x, v) in Ω, −∆v = λv + g(x, u) in Ω, u = v = 0, on ∂Ω, where Ω is a bounded domain in RN (N ≥ 3) with smooth boundary, λk0 < λ < λk0+1, where λk is the kth eigenvalue of −∆ in Ω with zero Dirichlet boundary condition. Both cases when f, g being superlinear and asymptotically linear at infin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2014

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2014/240208